
5V ECL Triple 2:1 Multiplexer

The MC100EL59 is a triple 2:1 multiplexer with differential outputs. The output data of the multiplexers can be controlled individually via the select inputs or as a group via the common select input. The flexible selection scheme makes the device useful for both data path and random logic applications.

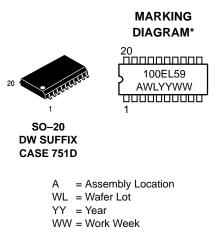
- Individual or Common Select Controls
- 500 ps Typical Propagation Delays
- ESD Protection: >2 KV HBM
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range: V_{CC}= 4.2 V to 5.7 V with V_{EE}= 0 V
- NECL Mode Operating Range: $V_{CC}=0$ V with $V_{EE}=-4.2$ V to -5.7 V
- Internal Input Pulldown Resistors
- Q Output will Default LOW with Inputs Open or at V_{EE}
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 1 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL–94 code V–0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 182 devices

Logic Diagram and Pinout: 20-Lead SOIC (Top View)

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

PIN DESCRIPTION

Pins	Function
D0a–D2a	ECL Input Data a*
D0b–D2b	ECL Input Data b*
SEL0-SEL2	ECL Individual Select Input*
COM_SEL	ECL Common Select Input*
Q0–Q2; <u>Q0</u> – <u>Q2</u>	ECL Differential Outputs
V _{CC}	Positive Supply
V _{EE}	Negative Supply


TRUTH TABLE					
SEL*	Data				
H L	a b				

* Pins will default low when left open.

ON Semiconductor[™]

http://onsemi.com

*For additional information, see Application Note AND8002/D

ORDERING INFORMATION

Device	Package	Shipping		
MC100EL59DW	SO–20	38 Units/Rail		
MC100EL59DWR2	SO-20	1000 Units/Reel		

MAXIMUM RATINGS (Note 1.)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8 to 0	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		8 to 0	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 to 0 6 to 0	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
ТА	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	20 SOIC 20 SOIC	90 60	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction to Case)	std bd	20 SOIC	30 to 35	°C/W
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

1. Maximum Ratings are those values beyond which device damage may occur.

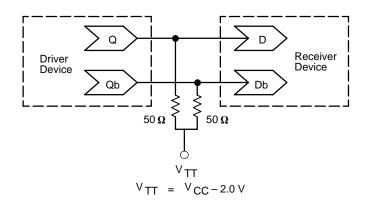
PECL DC CHARACTERISTICS V_{CC}= 5.0 V; V_{EE}= 0.0 V (Note 1)

		–40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		27	32		27	32		27	32	mA
V _{OH}	Output HIGH Voltage (Note 2.)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 2.)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV
V _{IH}	Input HIGH Voltage	3835		4120	3835		4120	3835		4120	mV
V _{IL}	Input LOW Voltage	3190		3525	3190		3525	3190		3525	mV
I _{IH}	Input HIGH Current			150			150			150	μΑ
IIL	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained. 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.8 V / -0.5 V.

2. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

NECL DC CHARACTERISTICS V_{CC}= 0.0 V; V_{EE}= -5.0 V (Note 1.)


		−40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		27	32		27	32		27	32	mA
V _{OH}	Output HIGH Voltage (Note 2.)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 2.)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V _{IH}	Input HIGH Voltage	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage	-1810		-1475	-1810		-1475	-1810		-1475	mV
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.5			μA

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.
Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / -0.5 V.
Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

			−40°C			25°C			85°C			
Symbol	Char	acteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle	Frequency		TBD			TBD			TBD		GHz
t _{PLH} t _{PHL}	Propagation Delay	DATA to Q/Q SEL to Q/Q COM_SEL to Q/Q	340 340 340		690 690 690	340 340 340		690 690 690	340 340 340		690 690 690	ps
t _{skew}	Output–Output S	kew Any D _n , D _m to Q			100			100			100	ps
t _{JITTER}	Cycle-to-Cycle J	litter		TBD			TBD			TBD		ps
t _r t _f	Output Rise/Fall (20% – 80%)		200		540	200		540	200		540	ps

AC CHARACTERISTICS $V_{CC}\text{=}~5.0~\text{V};~V_{EE}\text{=}~0.0~\text{V}~\text{or}~~V_{CC}\text{=}~0.0~\text{V};~V_{EE}\text{=}~-5.0~\text{V}~\text{(Note 1.)}$

1. V_{EE} can vary +0.8 V / -0.5 V.

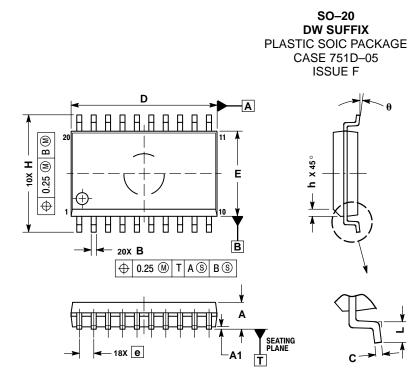


Figure 1. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1404	_	ECLinPS Circuit Performance at Non–Standard V_{IH} Levels
AN1405	_	ECL Clock Distribution Techniques
AN1406	_	Designing with PECL (ECL at +5.0 V)
AN1503	_	ECLinPS I/O SPICE Modeling Kit
AN1504	_	Metastability and the ECLinPS Family
AN1560	_	Low Voltage ECLinPS SPICE Modeling Kit
AN1568	_	Interfacing Between LVDS and ECL
AN1596	_	ECLinPS Lite Translator ELT Family SPICE I/O Model Kit
AN1650	_	Using Wire–OR Ties in ECLinPS Designs
AN1672	_	The ECL Translator Guide
AND8001	_	Odd Number Counters Design
AND8002	_	Marking and Date Codes
AND8020	_	Termination of ECL Logic Devices

PACKAGE DIMENSIONS

NOTES

- 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS
- INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION
- MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL
- BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS								
DIM	MIN	MAX							
Α	2.35	2.65							
A1	0.10	0.25							
В	0.35	0.49							
С	0.23	0.32							
D	12.65	12.95							
Е	7.40	7.60							
е	1.27	BSC							
Н	10.05	10.55							
h	0.25	0.75							
L	0.50	0.90							
θ	0 °	7 °							

are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

- EUROPE: LDC for ON Semiconductor European Support
- German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com Phone: (+1) 303-308-7141 (Mon-Fri 2:00pm to 7:00pm CET) French
- Email: ONlit-french@hibbertco.com English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT)
- Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031 Phone: 81-3-5740-2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.